Toyota Avalon (XX50) 2019-2022 Service & Repair Manual: Random/Multiple Cylinder Misfire Detected (P030000,P030027,P030085-P030600)

Toyota Avalon (XX50) 2019-2022 Service & Repair Manual / Engine / 2gr-fks Engine Control / Sfi System / Random/Multiple Cylinder Misfire Detected (P030000,P030027,P030085-P030600)

DESCRIPTION

When the engine misfires, high concentrations of hydrocarbons (HC) enter the exhaust gas. Extremely high hydrocarbon concentration levels can cause an increase in exhaust emission levels. Extremely high concentrations of hydrocarbons can also cause increases in the three-way catalytic converter temperature, which may cause damage to the three-way catalytic converter. To prevent this increase in emissions and to limit the possibility of thermal damage, the ECM monitors the misfire count. When the temperature of the three-way catalytic converter reaches the point of thermal degradation, the ECM blinks the MIL. To monitor misfires, the ECM uses both the VVT sensor and the crankshaft position sensor. The VVT sensor is used to identify any misfiring cylinders and the crankshaft position sensor is used to measure variations in the crankshaft rotation speed. Misfires are counted when the crankshaft rotation speed variations exceed predetermined thresholds. If the misfire count exceeds the threshold levels, and could cause emission control system performance deterioration, the ECM illuminates the MIL and stores a DTC.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Memory

Note

P030000

Random/Multiple Cylinder Misfire Detected

Simultaneous misfiring of several cylinders occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0300

P030027

Random/Multiple Cylinder Misfire Detected (Emission) Signal Rate of Change Above Threshold

An emission deterioration misfire occurs (2 trip detection logic).

  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on

DTC stored

SAE Code: -

P030085

Random / Multiple Cylinder Misfire Detected (Over Temperature) Signal Above Allowable Range

A misfire occurs that may damage the three-way catalytic converter (2 trip detection logic).

  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: -

P030100

Cylinder 1 Misfire Detected

Misfiring of a specific cylinder occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0301

P030200

Cylinder 2 Misfire Detected

Misfiring of a specific cylinder occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0302

P030300

Cylinder 3 Misfire Detected

Misfiring of a specific cylinder occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0303

P030400

Cylinder 4 Misfire Detected

Misfiring of a specific cylinder occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0304

P030500

Cylinder 5 Misfire Detected

Misfiring of a specific cylinder occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0305

P030600

Cylinder 6 Misfire Detected

Misfiring of a specific cylinder occurs and one of the following conditions is met (2 trip detection logic):

  • A misfire occurs that may damage the three-way catalytic converter (MIL blinks immediately when detected).
  • An emission deterioration misfire occurs (MIL illuminates).
  • Open or short in engine wire harness
  • Connector connection
  • Vacuum hose connections
  • Ignition system
  • Fuel injector assembly (for port injection)
  • Fuel injector assembly (for direct injection)
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Compression pressure
  • Valve timing
  • PCV valve and hose
  • PCV hose connections
  • Intake system
  • ECM

Comes on/Blinks*

*: The MIL flashes when a catalyst-damaging misfire is detected.

DTC stored

SAE Code: P0306

When DTCs for misfiring cylinders are randomly stored, but DTC P030000 is not stored, it indicates that misfires have been detected in different cylinders at different times. DTC P030000 is only stored when several misfiring cylinders are detected at the same time.

MONITOR DESCRIPTION

The ECM illuminates the MIL and stores a DTC when either one of the following conditions, which could cause emission deterioration, is detected (2 trip detection logic).

  • Within the first 1000 crankshaft revolutions after the engine starts, an excessive number of misfires (approximately 50 to 100 misfires per 1000 crankshaft revolutions) occurs once.
  • An excessive number of misfires (approximately 50 to 100 misfires per 1000 crankshaft revolutions) occurs a total of 4 times.

The ECM flashes the MIL (immediate detection logic) and stores a DTC (2 trip detection logic) when either one of the following conditions, which could cause damage to the three-way catalytic converter, is detected.

  • At a high engine speed, a sufficient amount of misfires to damage the catalyst occurring within 200 crankshaft revolutions is detected once.
  • At a normal engine speed, a sufficient amount of misfires to damage the catalyst occurring within 200 crankshaft revolutions is detected 3 times.

MONITOR STRATEGY

Related DTCs

P0300: Multiple cylinder misfire

P0301: Cylinder 1 misfire

P0302: Cylinder 2 misfire

P0303: Cylinder 3 misfire

P0304: Cylinder 4 misfire

P0305: Cylinder 5 misfire

P0306: Cylinder 6 misfire

Required Sensors/Components (Main)

Crankshaft position sensor

VVT sensor

Required Sensors/Components (Related)

Engine coolant temperature

Intake air temperature sensor (mass air flow meter sub-assembly)

Mass air flow meter sub-assembly

Frequency of Operation

Continuous

Duration

1000 crankshaft revolutions (soon after engine is started: 1 time, other 4 times) (Emission-related misfire)

200 crankshaft revolutions (1 or 3 times) (Catalyst-damaging misfire)

MIL Operation

2 driving cycles: Emission-related misfire

MIL flashes immediate: Catalyst-damaging misfire

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

Misfire

Monitor runs whenever the following DTCs are not stored

P0016, P0018 (VVT system bank 1, 2 - misalignment)

P0017, P0019 (Exhaust VVT system bank 1, 2 - misalignment)

P0101, P0102, P0103 (Mass air flow meter)

P0112, P0113 (Intake air temperature sensor)

P0117, P0118 (Engine coolant temperature sensor)

P0121, P0122, P0123, P0222, P0223, P2135 (Throttle position sensor)

P0125 (Insufficient coolant temperature for closed loop fuel control)

P0327, P0328, P0332, P0333 (Knock control sensor)

P0335, P0337, P0338 (Crankshaft position sensor)

P0340, P0342, P0343, P0345, P0347, P0348 (Camshaft position sensor)

P0351 - P0356 (Igniter)

P0365, P0367, P0368, P0390, P0392, P0393 (Exhaust camshaft position sensor)

P0500 (Vehicle speed sensor)

P0705 (Shift lever position switch)

Battery voltage

8 V or higher

VVT system

Not operated by scan tool

Engine speed

400 to 6800 rpm

Either of the following conditions is met

(a) or (b)

(a) Engine coolant temperature at engine start

Higher than -7°C (19°F)

(b) Engine coolant temperature

Higher than 20°C (68°F)

Fuel cut

Off

Monitor Period of Emission-related Misfire

First 1000 revolutions after engine start, or during check mode

Crankshaft 1000 revolutions

Except above

Crankshaft 1000 revolutions x 4

Monitor Period of Catalyst-damaging Misfire (MIL Blinks)

All of the following conditions 1, 2, 3 and 4 are met

Crankshaft 200 revolutions x 3

Except above (MIL blinks immediately)

Crankshaft 200 revolutions

1. Driving cycles

1st

2. Check mode

Off

3. Engine speed

Less than 2215 rpm

4. Engine load

Less than 60%

TYPICAL MALFUNCTION THRESHOLDS

Monitor Period of Emission-related Misfire

Misfire rate

2.7031% or higher

Monitor Period of Catalyst-damaging Misfire (MIL Blinks)

Number of misfires per 200 revolutions

103 or more (varies with engine speed and engine load)

MONITOR RESULT

Refer to detailed information in Checking Monitor Status.

Click here

P0300: Misfire / EWMA MISFIRE

Monitor ID

Test ID

Scaling

Unit

Description

$A1

$0B

Multiply by 1

Count

Total EWMA* misfire count of all cylinders in last ten driving cycles

P0300: Misfire / MISFIRE RATE

Monitor ID

Test ID

Scaling

Unit

Description

$A1

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of all cylinders in last driving cycle is displayed.
  • While engine is running, total misfire count of all cylinders in current driving cycle is displayed.
P0301: Misfire / EWMA MISFIRE1

Monitor ID

Test ID

Scaling

Unit

Description

$A2

$0B

Multiply by 1

Count

Total EWMA* misfire count of cylinder 1 in last ten driving cycles

P0301: Misfire / MISFIRE RATE1

Monitor ID

Test ID

Scaling

Unit

Description

$A2

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of cylinder 1 in last driving cycle is displayed.
  • While engine is running, total misfire count of cylinder 1 in current driving cycle is displayed.
P0302: Misfire / EWMA MISFIRE2

Monitor ID

Test ID

Scaling

Unit

Description

$A3

$0B

Multiply by 1

Count

Total EWMA* misfire count of cylinder 2 in last ten driving cycles

P0302: Misfire / MISFIRE RATE2

Monitor ID

Test ID

Scaling

Unit

Description

$A3

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of cylinder 2 in last driving cycle is displayed.
  • While engine is running, total misfire count of cylinder 2 in current driving cycle is displayed.
P0303: Misfire / EWMA MISFIRE3

Monitor ID

Test ID

Scaling

Unit

Description

$A4

$0B

Multiply by 1

Count

Total EWMA* misfire count of cylinder 3 in last ten driving cycles

P0303: Misfire / MISFIRE RATE3

Monitor ID

Test ID

Scaling

Unit

Description

$A4

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of cylinder 3 in last driving cycle is displayed.
  • While engine is running, total misfire count of cylinder 3 in current driving cycle is displayed.
P0304: Misfire / EWMA MISFIRE4

Monitor ID

Test ID

Scaling

Unit

Description

$A5

$0B

Multiply by 1

Count

Total EWMA* misfire count of cylinder 4 in last ten driving cycles

P0304: Misfire / MISFIRE RATE4

Monitor ID

Test ID

Scaling

Unit

Description

$A5

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of cylinder 4 in last driving cycle is displayed.
  • While engine is running, total misfire count of cylinder 4 in current driving cycle is displayed.
P0305: Misfire / EWMA MISFIRE5

Monitor ID

Test ID

Scaling

Unit

Description

$A6

$0B

Multiply by 1

Count

Total EWMA* misfire count of cylinder 5 in last ten driving cycles

P0305: Misfire / MISFIRE RATE5

Monitor ID

Test ID

Scaling

Unit

Description

$A6

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of cylinder 5 in last driving cycle is displayed.
  • While engine is running, total misfire count of cylinder 5 in current driving cycle is displayed.
P0306: Misfire / EWMA MISFIRE6

Monitor ID

Test ID

Scaling

Unit

Description

$A7

$0B

Multiply by 1

Count

Total EWMA* misfire count of cylinder 6 in last ten driving cycles

P0306: Misfire / MISFIRE RATE6

Monitor ID

Test ID

Scaling

Unit

Description

$A7

$0C

Multiply by 1

Count

  • When engine switch on (IG), total misfire count of cylinder 6 in last driving cycle is displayed.
  • While engine is running, total misfire count of cylinder 6 in current driving cycle is displayed.

HINT:

*: EWMA (Exponential Weighted Moving Average) misfire counts for last 10 driving cycles (calculated) Calculation: 0.1 x (current counts) + 0.9 x (previous average)

Initial value for (previous average) = 0

CONFIRMATION DRIVING PATTERN

HINT:

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here

  • Permanent misfire and fuel system DTCs can only be cleared when performing the universal trip driving pattern when no malfunction is detected.
  1. Connect the Techstream to the DLC3.
  2. Turn the engine switch on (IG).
  3. Turn the Techstream on.
  4. Record the DTC(s) and Freeze Frame Data.
  5. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  6. Using the Techstream, switch the ECM from normal mode to check mode.

    Click here

  7. Start the engine.
  8. Read the misfire counts of each cylinder, Misfire Count Cylinder #1 to Misfire Count Cylinder #6, with the engine idling. If any misfire count is displayed, skip the following confirmation driving pattern.
  9. Drive the vehicle so that the vehicle conditions displayed in Misfire RPM and Misfire Load of the Data List are the same as the freeze frame data. Perform this step several times.

    HINT:

    In order to store misfire DTCs, it is necessary to operate the vehicle for the period of time shown in the table below, confirm the Misfire RPM and Misfire Load in the Data List.

    Engine speed

    Duration

    Idling

    8.0 minutes or more

    1000

    4.5 minutes or more

    2000

    2.5 minutes or more

    3000

    1.5 minutes or more

  10. Check whether misfires have occurred by checking DTCs and Freeze Frame Data.

    HINT:

    Do not turn the engine switch off until the output DTC(s) and freeze frame data have been recorded. When the ECM returns to normal mode (default), the stored DTC(s), freeze frame data and other data are cleared.

  11. Record the DTC(s), freeze frame data and misfire counts.
  12. Turn the engine switch off and wait for at least 30 seconds.
  13. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).

WIRING DIAGRAM

Refer to DTC P010012 for the mass air flow meter sub-assembly circuit.

Click here

CAUTION / NOTICE / HINT

NOTICE:

Inspect the fuses for circuits related to this system before performing the following procedure.

HINT:

  • If any DTCs other than misfire DTCs are output, troubleshoot those DTCs first.
  • Check the "Fuel Cut Elapsed Time" in the Data List or the Freeze Frame Data.

    If the elapsed time is over 0 seconds, then the engine speed is high (engine speed at which fuel cut occurs + 500 rpm).

    When this has happened, there is the possibility that the No. 1 valve rocker arm sub-assembly will become loose and a fire could start, so check that the No. 1 valve rocker arm sub-assembly is properly attached.

  • By clearing the DTCs, "Fuel Cut Elapsed Time" will be cleared.
  • If the misfire does not recur when the vehicle is brought to the workshop, reproduce the conditions stored in the ECM as freeze frame data.
  • If the misfire still cannot be reproduced even though the conditions stored in the ECM as freeze frame data have been reproduced, one of the following factors is considered to be a possible cause of the problem:
    1. There was insufficient fuel in the tank.
    2. Improper fuel was used.
    3. The spark plugs have been contaminated.
    4. The problem requires further diagnosis.
  • After finishing repairs, check the misfire counts of the cylinders (Misfire Count Cylinder #1 to Misfire Count Cylinder #6).
  • Be sure to confirm that no misfiring cylinder DTCs are stored again by performing the confirmation driving pattern after finishing repairs.
  • For 6 cylinder engine, the ECM intentionally does not set the specific misfiring cylinder DTCs at high engine speed. If misfires occur only in high engine speed areas, only DTC P030000 is set.

    In the event of DTC P030000 being present, perform the following operations:

    1. Clear the DTCs.

      Click here

    2. Start the engine and conduct the confirmation driving pattern.
    3. Read the misfire count of each cylinder or DTC(s) using the Techstream.
    4. Repair the cylinder(s) that has a high misfiring count or is indicated by the DTC.
    5. After finishing repairs, conduct the confirmation driving pattern again, in order to verify that DTC P030000 is not set.
  • When one of Short FT B1S1, Long FT B1S1, Short FT B2S1 or Long FT B2S1 in the freeze frame data is outside the range of +/-20%, the air fuel ratio may be rich (-20% or less) or lean (20% or higher).
  • When Coolant Temperature in the freeze frame data is less than 75°C (167°F), the misfires have occurred only while warming up the engine.
  • Vehicle body vibration caused by an extremely imbalanced drive wheel may cause misfire DTCs to be stored.
  • Read freeze frame data using the Techstream. The ECM records vehicle and driving condition information as freeze frame data the moment a DTC is stored. When troubleshooting, freeze frame data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO MISFIRE DTCS)

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Trouble Codes.

(e) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTC P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 and/or P030600 are output

A

DTC P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 and/or P030600 and other DTCs are output

B

HINT:

If any DTCs other than P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 and/or P030600 are output, troubleshoot those DTCs first.

B

GO TO DTC CHART

A

2.

CHECK PCV HOSE CONNECTIONS

(a) Check the PCV hose connections.

Click here

OK:

PCV valve and hose are correctly connected and are not damaged.

NG

REPAIR OR REPLACE PCV HOSE

OK

3.

READ VALUE USING TECHSTREAM (MISFIRE RPM AND MISFIRE LOAD)

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Data List / Misfire RPM and Misfire Load.

Powertrain > Engine > Data List

Tester Display

Misfire RPM

Misfire Load

(e) Read and note the Misfire RPM and Misfire Load values.

HINT:

The Misfire RPM and Misfire Load values indicate the vehicle conditions under which the misfire occurred.

NEXT

4.

READ VALUE USING TECHSTREAM (CATALYST OT MISFIRE FUEL CUT)

(a) Enter the following menus: Powertrain / Engine / Data List / Catalyst OT Misfire Fuel Cut.

Powertrain > Engine > Data List

Tester Display

Catalyst OT Misfire Fuel Cut

(b) Read the value displayed on the Techstream.

Data List

Result

Proceed to

Catalyst OT Misfire Fuel Cut

Avail

A

Not Avl

B

B

GO TO STEP 6

A

5.

PERFORM ACTIVE TEST USING TECHSTREAM (PROHIBIT THE CATALYST OT MISFIRE PREVENT FUEL CUT)

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Active Test / Prohibit the Catalyst OT Misfire Prevent Fuel Cut.

Powertrain > Engine > Active Test

Tester Display

Prohibit the Catalyst OT Misfire Prevent Fuel Cut

(e) Perform the Active Test.

NOTICE:

When performing the Active Test, make sure the vehicle is stopped and the engine is either idling or being revved within 3000 rpm.

NEXT

6.

CHECK MISFIRE COUNT OF PORT INJECTION

(a) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

(b) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Port / Data List / Coolant Temperature, Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #6.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

Injection Mode

Misfire Count Cylinder #1

Misfire Count Cylinder #2

Misfire Count Cylinder #3

Misfire Count Cylinder #4

Misfire Count Cylinder #5

Misfire Count Cylinder #6

(c) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Port. If no misfire counts occur in any cylinders, perform procedure [A] and [B] and then check the misfire counts again.

(1) Drive the vehicle with the Misfire RPM and Misfire Load noted in the "Read Value Using Techstream (Misfire RPM and Misfire Load)" procedures above [A].

(2) Read the Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #6 or DTCs displayed on the Techstream [B].

Injection Mode

Misfire Count

Proceed to

Port

1 or 2 cylinders have misfire counts

A

3 cylinders or more have misfire counts

There are no misfire counts

B

B

GO TO STEP 10

A

7.

CHECK MISFIRE COUNT OF DIRECT INJECTION

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

(e) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Direct / Data List / Coolant Temperature, Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #6.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

Injection Mode

Misfire Count Cylinder #1

Misfire Count Cylinder #2

Misfire Count Cylinder #3

Misfire Count Cylinder #4

Misfire Count Cylinder #5

Misfire Count Cylinder #6

(f) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Direct. If no misfire counts occur in any cylinders, perform procedure [A] and [B] and then check the misfire counts again.

(1) Drive the vehicle with the Misfire RPM and Misfire Load noted in the "Read Value Using Techstream (Misfire RPM and Misfire Load)" procedures above [A].

(2) Read the Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #6 or DTCs displayed on the Techstream [B].

Misfire Count

Proceed to

Port (Result of step 6)

Direct

1 or 2 cylinders have misfire counts

1 or 2 cylinders have misfire counts

A

3 cylinders or more have misfire counts

3 cylinders or more have misfire counts

B

1 or 2 cylinders have misfire counts

There are no misfire counts

C

3 cylinders or more have misfire counts

There are no misfire counts

D

HINT:

Perform "Inspection After Repair" after replacing the fuel injector assembly (for port injection).

Click here

A

GO TO STEP 13

B

GO TO STEP 16

C

REPLACE FUEL INJECTOR ASSEMBLY (FOR PORT INJECTION (MISFIRING CYLINDER))

D

8.

CHECK FUEL PRESSURE (FOR LOW PRESSURE SIDE)

(a) Check the fuel pressure (for low pressure side).

Click here

HINT:

Perform "Inspection After Repair" after replacing the fuel injector assembly (for port injection).

Click here

OK

REPLACE FUEL INJECTOR ASSEMBLY (FOR PORT INJECTION (MISFIRING CYLINDER))

NG

9.

CHECK FURL PUMP OPERATION (FOR LOW PRESSURE SIDE)

(a) Check the fuel pump operation (for low pressure side).

Click here

OK

CHECK AND REPLACE FUEL SYSTEM

NG

GO TO FUEL PUMP CONTROL CIRCUIT

10.

CHECK MISFIRE COUNT OF DIRECT INJECTION

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

(e) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Direct / Data List / Coolant Temperature, Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #6.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

Injection Mode

Misfire Count Cylinder #1

Misfire Count Cylinder #2

Misfire Count Cylinder #3

Misfire Count Cylinder #4

Misfire Count Cylinder #5

Misfire Count Cylinder #6

(f) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Direct. If no misfire counts occur in any cylinders, perform procedure [A] and [B] and then check the misfire counts again.

(1) Drive the vehicle with the Misfire RPM and Misfire Load noted in the "Read Value Using Techstream (Misfire RPM and Misfire Load)" procedures above [A].

(2) Read the Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #6 or DTCs displayed on the Techstream [B].

Misfire Count

Proceed to

Port (Result of step 6)

Direct

There are no misfire counts

There are misfire counts

A

There are no misfire counts

There are no misfire counts

B

HINT:

Perform "Inspection After Repair" after replacing the fuel injector assembly (for direct injection).

Click here

A

REPLACE FUEL INJECTOR ASSEMBLY (FOR DIRECT INJECTION)

B

11.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the engine switch off and wait for at least 30 seconds.

NEXT

12.

CHECK MISFIRE COUNT

(a) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

(b) Turn the Techstream on.

(c) Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature, Injection Mode, Misfire Count Cylinder #1 to Misfire Count Cylinder #6, Misfire RPM and Misfire Load.

Powertrain > Engine > Data List

Tester Display

Coolant Temperature

Injection Mode

Misfire Count Cylinder #1

Misfire Count Cylinder #2

Misfire Count Cylinder #3

Misfire Count Cylinder #4

Misfire Count Cylinder #5

Misfire Count Cylinder #6

Misfire RPM

Misfire Load

(d) Drive the vehicle with Misfire RPM and Misfire Load.

(e) Monitor all of the misfire count values or DTCs and Injection Mode displayed on the Techstream.

Misfire Count

Injection Mode

Proceed to

There are no misfire counts

-

A

1 or 2 cylinders have misfire counts

Port or Either

B

3 cylinders or more have misfire counts

Port or Either

C

There are misfire counts

Direct

D

HINT:

Perform "Inspection After Repair" after replacing the fuel injector assembly (for direct injection).

Click here

A

CHECK FOR INTERMITTENT PROBLEMS

C

GO TO STEP 16

D

REPLACE FUEL INJECTOR ASSEMBLY (FOR DIRECT INJECTION)

B

13.

INSPECT SPARK PLUG

(a) Inspect the spark plug of the misfiring cylinder.

Click here

HINT:

Perform "Inspection After Repair" after replacing the spark plug.

Click here

NG

REPLACE SPARK PLUG

OK

14.

CHECK FOR SPARK (SPARK TEST)

(a) Perform a spark test.

Click here

HINT:

  • If the result of the spark test is normal, proceed to the next step.
  • Perform "Inspection After Repair" after replacing the spark plug or ignition coil assembly.

    Click here

NEXT

15.

CHECK CYLINDER COMPRESSION PRESSURE

(a) Measure the cylinder compression pressure of the misfiring cylinder.

Click here

HINT:

Perform "Inspection After Repair" after repairing or replacing the engine assembly.

Click here

OK

REPLACE ECM

NG

CHECK ENGINE TO DETERMINE CAUSE OF LOW COMPRESSION

16.

CHECK INTAKE SYSTEM

(a) Check the intake system for vacuum leaks.

Click here

OK:

No leaks in intake system.

HINT:

Perform "Inspection After Repair" after repairing or replacing the intake system.

Click here

NG

REPAIR OR REPLACE INTAKE SYSTEM

OK

17.

READ VALUE USING TECHSTREAM (COOLANT TEMPERATURE)

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature.

Powertrain > Engine > Data List

Tester Display

Coolant Temperature

(e) Read the Data List twice, when the engine is both cold and warmed up.

Standard:

Techstream Display

Condition

Specified Condition

Coolant Temperature

Cold engine

Same as ambient air temperature

Warm engine

Between 75 and 100°C (167 and 212°F)

HINT:

Perform "Inspection After Repair" after replacing the engine coolant temperature sensor.

Click here

NG

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

OK

18.

READ VALUE USING TECHSTREAM (MASS AIR FLOW SENSOR)

(a) Connect the Techstream to the DLC3.

(b) Start the engine.

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Data List / Engine Speed, Mass Air Flow Sensor and Coolant Temperature.

Powertrain > Engine > Data List

Tester Display

Engine Speed

Mass Air Flow Sensor

Coolant Temperature

(e) Allow the engine to idle until Coolant Temperature reaches 75°C (167°F) or higher.

(f) Read Mass Air Flow Sensor while maintaining an engine speed of 3000 rpm.

Standard:

Techstream Display

Condition

Specified Condition

Mass Air Flow Sensor

Engine warmed up

Shift position: P

A/C: Off

Engine Speed: 3000 rpm

Between 10.6 and 15.8 gm/sec

NG

GO TO STEP 23

OK

19.

CHECK VALVE TIMING (CHECK FOR LOOSE TIMING CHAIN AND JUMPED TEETH)

(a) Remove the cylinder head cover sub-assembly and cylinder head cover sub-assembly LH.

*a

Timing Mark

*b

TDC Timing Mark

*c

Groove

-

-

(b) Turn the crankshaft pulley and align its groove with the TDC timing mark of the timing chain cover.

(c) Check that the timing marks of the camshaft timing gear assemblies and camshaft timing exhaust gear assemblies are aligned with the timing marks of the bearing cap as shown in the illustration.

HINT:

If the timing marks are not as shown, turn the crankshaft one revolution clockwise.

OK:

Timing marks on camshaft timing gear assemblies and camshaft timing exhaust gear assemblies are aligned as shown in the illustration.

HINT:

If the result is not as specified, check for mechanical malfunctions that may have affected the valve timing, such as a jumped tooth or stretching of the timing chain.

OK

GO TO STEP 23

NG

20.

CHECK ENGINE MECHANICAL SYSTEM

(a) Check for mechanical malfunctions that affect the valve timing, such as a jumped tooth or stretching of the timing chain.

HINT:

Perform "Inspection After Repair" after repairing or replacing the engine mechanical system.

Click here

NG

REPAIR OR REPLACE MALFUNCTIONING PARTS, COMPONENT AND AREA

OK

21.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the engine switch off and wait for at least 30 seconds.

NEXT

22.

CONFIRM WHETHER DTC OUTPUT RECURS (MISFIRE DTCS)

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.

Powertrain > Engine > Utility

Tester Display

All Readiness

(c) Input the DTC: P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 or P030600.

(d) Check the DTC judgment result.

Result

Proceed to

NORMAL

(DTCs are not output)

A

ABNORMAL

(DTC P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 and/or P030600 are output)

B

A

CHECK FOR INTERMITTENT PROBLEMS

B

GO TO STEP 23

23.

CHECK HARNESS AND CONNECTOR (MASS AIR FLOW METER SUB-ASSEMBLY CONNECTOR CONNECTION)

(a) Check the connection and terminal contact pressure of connectors and wire harnesses between the mass air flow meter sub-assembly and ECM.

Click here

HINT:

Repair any problems.

NEXT

24.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the engine switch off and wait for at least 30 seconds.

NEXT

25.

CHECK WHETHER DTC OUTPUT RECURS (MISFIRE DTCS)

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.

Powertrain > Engine > Utility

Tester Display

All Readiness

(c) Input the DTC: P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 or P030600.

(d) Check the DTC judgment result.

Result

Proceed to

NORMAL

(DTCs are not output)

A

ABNORMAL

(DTC P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 and/or P030600 are output)

B

A

END

B

26.

CHECK HARNESS AND CONNECTOR (MASS AIR FLOW METER SUB-ASSEMBLY - ECM)

(a) Disconnect the mass air flow meter sub-assembly connector.

(b) Disconnect the ECM connector.

(c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

C28-3 (5V) - C56-90 (VC)

Always

Below 1 Ω

C28-1 (FG) - C56-116 (VG)

Always

Below 1 Ω

C28-2 (E2G) - C56-115 (E2G)

Always

Below 1 Ω

C28-3 (5V) or C56-90 (VC) - Body ground and other terminals

Always

10 kΩ or higher

C28-1 (FG) or C56-116 (VG) - Body ground and other terminals

Always

10 kΩ or higher

C28-2 (E2G) or C56-115 (E2G) - Body ground and other terminals

Always

10 kΩ or higher

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

27.

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY

(a) Replace the mass air flow meter sub-assembly.

Click here

HINT:

  • If the results of the inspections performed in step 17 (READ VALUE USING TECHSTREAM (MASS AIR FLOW SENSOR)) indicated no problem, proceed to the next step without replacing the mass air flow meter sub-assembly.
  • Perform "Inspection After Repair" after replacing the mass air flow meter sub-assembly.

    Click here

NEXT

28.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the engine switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the engine switch off and wait for at least 30 seconds.

NEXT

29.

CONFIRM WHETHER MALFUNCTION HAS BEEN SUCCESSFULLY REPAIRED

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Utility / All Readiness.

Powertrain > Engine > Utility

Tester Display

All Readiness

(c) Input the DTC: P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 or P030600.

(d) Check the DTC judgment result.

Result

Proceed to

NORMAL

(DTCs are not output)

A

ABNORMAL

(DTC P030000, P030027, P030085, P030100, P030200, P030300, P030400, P030500 and/or P030600 are output)

B

A

END

B

REPLACE ECM

    Evaporative Emission System Switching Valve Control Circuit Actuator Stuck Off (P24187F)

    Knock Sensor 1 Bank 1 or Single Sensor Circuit Short to Ground (P032511,P033011)

    See More:

    Toyota Avalon (XX50) 2019-2022 Service & Repair Manual > Hood: Adjustment
    ADJUSTMENT CAUTION / NOTICE / HINT *a Centering Bolt *b Standard Bolt HINT: Centering bolts are used to install the hood hinges and hood lock. The hood and hood lock cannot be adjusted with the centering bolts installed. Substitute the centering bolts with standard bolts with washers when making adj ...

    Toyota Avalon (XX50) 2019-2022 Owners Manual

    Toyota Avalon (XX50) 2019-2022 Service & Repair Manual

    © 2025 Copyright www.tavalon.net
    0.0113