Toyota Avalon (XX50) 2019-2022 Service & Repair Manual: System Too Lean Bank 1 (P017100,P017200,P117000,P117B00)

Toyota Avalon (XX50) 2019-2022 Service & Repair Manual / Engine / A25a-fxs Engine Control / Sfi System / System Too Lean Bank 1 (P017100,P017200,P117000,P117B00)

DESCRIPTION

The fuel trim is related to the feedback compensation value, not to the basic injection duration. The fuel trim consists of both the short-term and long-term fuel trims.

The short-term fuel trim is fuel compensation that is used to constantly maintain the air fuel ratio at stoichiometric levels. The signal from the air fuel ratio sensor (sensor 1) indicates whether the air fuel ratio is rich or lean compared to the stoichiometric ratio. This triggers a reduction in the fuel injection volume if the air fuel ratio is rich and an increase in the fuel injection volume if lean.

Factors such as individual engine differences, wear over time and changes in operating environment cause short-term fuel trim to vary from the central value. The long-term fuel trim, which controls overall fuel compensation, compensates for long-term deviations in the fuel trim from the central value caused by the short-term fuel trim compensation.

DTC No.

Detection Item

DTC Detection Condition

Trouble Area

MIL

Memory

Note

P017100

System Too Lean Bank 1

With a warm engine and stable air fuel ratio feedback, the fuel trim is considerably in error to the lean side (2 trip detection logic).

  • Intake system
  • Port fuel injector assembly
  • Direct fuel injector assembly
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Fuel pressure
  • Fuel pressure sensor (for high pressure side)
  • Gas leak from exhaust system
  • Open or short in air fuel ratio sensor (sensor 1) circuit
  • Air fuel ratio sensor (sensor 1)
  • PCV valve and hose
  • PCV hose connections
  • EGR valve assembly
  • Wire harness or connector
  • ECM

Comes on

DTC stored

SAE Code: P0171

P017200

System Too Rich Bank 1

With a warm engine and stable air fuel ratio feedback, the fuel trim is considerably in error to the rich side (2 trip detection logic).

  • Port fuel injector assembly
  • Direct fuel injector assembly
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • Ignition system
  • Fuel pressure
  • Fuel pressure sensor (for high pressure side)
  • Gas leak from exhaust system
  • Open or short in air fuel ratio sensor (sensor 1) circuit
  • Air fuel ratio sensor (sensor 1)
  • EGR valve assembly
  • Wire harness or connector
  • ECM

Comes on

DTC stored

SAE Code: P0172

P117000

Fuel Performance/Port Injector

Although a DTC is stored for a rich or lean condition, the amount of fuel trim during direct injection is normal (1 trip detection logic)

  • Port fuel injector assembly
  • Direct fuel injector assembly
  • Fuel pressure
  • ECM

Does not come on

DTC stored

SAE Code: P1170

P117B00

Fuel Performance/Direct Injector

Although a DTC is stored for a rich or lean condition, the amount of fuel trim during port injection is normal (1 trip detection logic)

  • Port fuel injector assembly
  • Direct fuel injector assembly
  • Fuel pressure
  • ECM

Does not come on

DTC stored

SAE Code: P117B

HINT:

  • When DTC P017100 is stored, the actual air fuel ratio is on the lean side. When DTC P017200 is stored, the actual air fuel ratio is on the rich side.
  • If the vehicle runs out of fuel, the air fuel ratio is lean and DTC P017100 may be stored. The MIL is then illuminated.
  • When DTC P117000 or P117B00 is output , it may not be possible to precisely determine whether the port injection or the direct injection is malfunctioning, depending on the conditions. In this case, perform an Active Test (Control the Injection Mode) to determine which injection system is malfunctioning.

MONITOR DESCRIPTION

Under closed loop fuel control, fuel injection volumes that deviate from those estimated by the ECM cause changes in the long-term fuel trim compensation value. The long-term fuel trim is adjusted when there are persistent deviations in the short-term fuel trim values. Deviations from the fuel injection volumes estimated by the ECM also affect the average fuel trim learned value, which is a combination of the average short-term fuel trim (fuel feedback compensation value) and the average long-term fuel trim (learned value of the air fuel ratio). If the average fuel trim learned value exceeds the malfunction thresholds, the ECM interprets this as a malfunction of the fuel system and stores a DTC.

Example:

The average fuel trim learned value is +35% or higher, or -35% or less, the ECM interprets this as a fuel system malfunction.

MONITOR STRATEGY

Related DTCs

P0171: Fuel trim lean

P0172: Fuel trim rich

P1170: Fuel trim (port injection fail)

P117B: Fuel trim (direct injection fail)

Required Sensors/Components (Main)

Fuel system

Required Sensors/Components (Related)

Air fuel ratio sensor (sensor 1)

Mass air flow meter sub-assembly

Crankshaft position sensor

Frequency of Operation

Continuous

Duration

Within 10 seconds

MIL Operation

2 driving cycles: P0171 and P0172

Immediate: P1170 and P117B

Sequence of Operation

None

TYPICAL ENABLING CONDITIONS

Monitor runs whenever the following DTCs are not stored

P0010, P1360, P1362, P1364, P1366, P2614 (Motor drive VVT system control module)

P0011 (VVT system - advance)

P0012 (VVT system - retard)

P0013 (Exhaust VVT oil control solenoid)

P0014 (Exhaust VVT system - advance)

P0015 (Exhaust VVT system - retard)

P0016 (VVT system - misalignment)

P0017 (Exhaust VVT system - misalignment)

P0031, P0032, P101D (Air fuel ratio sensor (sensor 1) heater)

P0101, P0102, P0103 (Mass air flow meter)

P0107, P0108 (Manifold absolute pressure)

P0117, P0118 (Engine coolant temperature sensor)

P0121, P0122, P0123, P0222, P0223, P2135 (Throttle position sensor)

P0125 (Insufficient coolant temperature for closed loop fuel control)

P0191, P0192, P0193 (Fuel pressure sensor (for high pressure side))

P0201, P0202, P0203, P0204, P062D, P21CF, P21D0, P21D1, P21D2 (Fuel injector)

P0335, P0337, P0338 (Crankshaft position sensor)

P0340, P0342, P0343 (Camshaft position sensor)

P0365, P0367, P0368 (Exhaust camshaft position sensor)

P0401 (EGR system)

P107B, P107C, P107D (Fuel pressure sensor (for low pressure side))

P11EA, P11EC, P11ED, P11EE, P11EF, P219A, P219C, P219D, P219E, P219F (Air-fuel ratio imbalance)

Fuel system status

Closed loop

Auxiliary battery voltage

11 V or higher

Either of the following conditions is met

1 or 2

1. Engine speed

Less than 1100 rpm

2. Engine load

10% or higher

Catalyst monitor

Not executed

TYPICAL MALFUNCTION THRESHOLDS

P0171 and P0172: Fuel-Trim Lean/Rich

EVAP purge-cut

Executing

Either of the following conditions is met

1 or 2

1. Average between short-term fuel trim and long-term fuel trim

35% or higher (varies with engine coolant temperature)

2. Average between short-term fuel trim and long-term fuel trim

-35% or less (varies with engine coolant temperature)

P1170: Fuel Trim (Port Injection Fail)

DTCs of fuel system have already been set

-

EVAP purge-cut

Executing

Direct injection

100%

Both of the following conditions are met

1 and 2

1. Average between short-term fuel trim and long-term fuel trim

Less than 35% (varies with engine coolant temperature)

2. Average between short-term fuel trim and long-term fuel trim

Higher than -35% (varies with engine coolant temperature)

P117B: Fuel Trim (Direct Injection Fail)

DTCs of fuel system have already been set

-

EVAP purge-cut

Executing

Port injection

100%

Both of the following conditions are met

1 and 2

1. Average between short-term fuel trim and long-term fuel trim

Less than 35% (varies with engine coolant temperature)

2. Average between short-term fuel trim and long-term fuel trim

Higher than -35% (varies with engine coolant temperature)

CONFIRMATION DRIVING PATTERN

HINT:

  • When clearing the permanent DTCs, refer to the "CLEAR PERMANENT DTC" procedure.

    Click here

  • Permanent misfire and fuel system DTCs can only be cleared when performing the universal trip driving pattern when no malfunction is detected.
  1. Connect the Techstream to the DLC3.
  2. Turn the power switch on (IG).
  3. Turn the Techstream on.
  4. Clear the DTCs (even if no DTCs are stored, perform the clear DTC procedure).
  5. Turn the power switch off and wait for at least 30 seconds.
  6. Turn the power switch on (IG) [A].
  7. Turn the Techstream on.
  8. Put the engine in Inspection Mode (Maintenance Mode).

    Click here

  9. Start the engine and warm it up until the engine coolant temperature 75°C (167°F) or higher with all the accessories switched off [B].
  10. With the engine warmed up, idle the engine for 5 minutes or more [C].
  11. With the engine running, drive the vehicle at a speed between 60 and 100 km/h (37 and 62 mph) for 5 minutes or more [D].

    CAUTION:

    When performing the confirmation driving pattern, obey all speed limits and traffic laws.

    HINT:

    If the engine stops, further depress the accelerator pedal to restart the engine.

  12. Stop the vehicle, and idle the engine for 5 minutes or more [E].
  13. Enter the following menus: Powertrain / Engine / Trouble Codes [F].
  14. Read the pending DTCs.

    HINT:

    If a pending DTC is output, the system is malfunctioning.

WIRING DIAGRAM

  • Refer to DTC P003012 for the air fuel ratio sensor (sensor 1) circuit.

    Click here

  • Refer to DTC P010012 for the mass air flow meter sub-assembly circuit.

    Click here

CAUTION / NOTICE / HINT

NOTICE:

  • Inspect the fuses for circuits related to this system before performing the following procedure.
  • Vehicle Control History may be stored in the hybrid vehicle control ECU assembly if the engine is malfunctioning. Certain vehicle condition information is recorded when Vehicle Control History is stored. Reading the vehicle conditions recorded in both the Freeze Frame Data and Vehicle Control History can be useful for troubleshooting.

    Click here

    (Select Powertrain in Health Check and then check the time stamp data.)

    Click here

  • If any "Engine Malfunction" Vehicle Control History item has been stored in the hybrid vehicle control ECU assembly, make sure to clear it. However, as all Vehicle Control History items are cleared simultaneously, if any Vehicle Control History items other than "Engine Malfunction" are stored, make sure to perform any troubleshooting for them before clearing Vehicle Control History.

    Click here

HINT:

  • Sensor 1 refers to the sensor closest to the engine assembly.
  • Sensor 2 refers to the sensor farthest away from the engine assembly.
  • A low air fuel ratio sensor (sensor 1) current could be caused by a rich air fuel mixture. Check for conditions that would cause the engine to run rich.
  • A high air fuel ratio sensor (sensor 1) current could be caused by a lean air fuel mixture. Check for conditions that would cause the engine to run lean.
  • Read Freeze Frame Data using the Techstream. The ECM records vehicle and driving condition information as Freeze Frame Data the moment a DTC is stored. When troubleshooting, Freeze Frame Data can help determine if the vehicle was moving or stationary, if the engine was warmed up or not, if the air fuel ratio was lean or rich, and other data from the time the malfunction occurred.

PROCEDURE

1.

CHECK ANY OTHER DTCS OUTPUT (IN ADDITION TO DTC P017100, P017200, P117000 AND/OR P117B00)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Trouble Codes.

(e) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTC P017100, P017200, P117000 and/or P117B00 is output

A

DTC P017100, P017200, P117000 and/or P117B00 and other DTCs are output

B

HINT:

If any DTCs other than P017100, P017200, P117000 and/or P117B00 are output, troubleshoot those DTCs first.

B

GO TO DTC CHART

A

2.

PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION MODE)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Data List / Coolant Temperature, Injection Mode, Short FT B1S1 and Long FT B1S1.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

Injection Mode

Short FT B1S1

Long FT B1S1

(g) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Port.

OK:

Techstream Display

Specified Condition

Total of Short FT B1S1 and Long FT B1S1

Between -20 and 20%

(h) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Direct.

OK:

Techstream Display

Specified Condition

Total of Short FT B1S1 and Long FT B1S1

Between -20 and 20%

Item

Proceed to

Port

Direct

OK

OK

A

OK

NG

B

NG

OK

C

NG

NG

D

B

GO TO STEP 4

C

GO TO STEP 11

D

GO TO STEP 12

A

3.

CHECK IF VEHICLE HAS RUN OUT OF FUEL IN PAST

(a) Has the vehicle run out of fuel in the past?

YES

DTC CAUSED BY RUNNING OUT OF FUEL

NO

CHECK FOR INTERMITTENT PROBLEMS

4.

READ VALUE USING TECHSTREAM (FUEL PRESSURE (HIGH))

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Data List / Engine Speed, Coolant Temperature, Fuel Pressure (High) and Injection Mode.

Powertrain > Engine > Data List

Tester Display

Engine Speed

Coolant Temperature

Fuel Pressure (High)

Injection Mode

(g) According to the display on the Techstream, read the Data List.

HINT:

During charge control, the engine speed is set at idle. Therefore, the engine speed will not increase when the accelerator pedal is depressed. In this case, read the Data List after charge control has completed.

Standard:

Techstream Display

Condition

Specified Condition

Fuel Pressure (High)

  • Shift position: P
  • A/C: Off
  • Engine warmed up
  • Engine Speed: 2500 rpm
  • Injection Mode: Direct

3000 to 25000 kPa

NG

GO TO STEP 7

OK

5.

PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION MODE (DIRECT))

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Data List / Coolant Temperature, High Pressure Fuel Pump Duty Ratio (D4), Injection Mode, Short FT B1S1 and Long FT B1S1.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

High Pressure Fuel Pump Duty Ratio (D4)

Injection Mode

Short FT B1S1

Long FT B1S1

(g) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Direct.

HINT:

The A/C switch and all accessory switches should be off, and the shift lever should be in the P position, and the engine should be fully warmed up.

Item

Proceed to

Injection Mode

High Pressure Fuel Pump Duty Ratio (D4)

Total of Short FT B1S1 and Long FT B1S1

Direct

10 to 50%

-

A

50% or higher

-20% or less

B

10% or less

+20% or higher

50% or higher

+20% or higher

C

10% or less

-20% or less

D

HINT:

Perform "Inspection After Repair" after replacing the fuel pressure sensor (for high pressure side).

Click here

B

REPLACE FUEL PRESSURE SENSOR (FOR HIGH PRESSURE SIDE)

C

GO TO STEP 8

D

REPLACE ECM

A

6.

PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION MODE (DIRECT))

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Data List / Coolant Temperature, High Pressure Fuel Pump Duty Ratio (D4), Injection Mode, Short FT B1S1 and Long FT B1S1.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

High Pressure Fuel Pump Duty Ratio (D4)

Injection Mode

Short FT B1S1

Long FT B1S1

(g) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Direct.

HINT:

The A/C switch and all accessory switches should be off, and the shift lever should be in the P position, and the engine should be fully warmed up.

Item

Proceed to

Injection Mode

High Pressure Fuel Pump Duty Ratio (D4)

Total of Short FT B1S1 and Long FT B1S1

Direct

10 to 50%

-25% or less

A

10 to 50%

+25% or higher

10 to 50%

-25 to +25%

B

HINT:

Perform "Inspection After Repair" after replacing the direct fuel injector assembly.

Click here

A

REPLACE DIRECT FUEL INJECTOR ASSEMBLY

B

CHECK FOR INTERMITTENT PROBLEMS

7.

CHECK MISFIRE COUNT OF DIRECT INJECTION

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Mode / Data List / Coolant Temperature, Injection Mode and Misfire Count Cylinder #1 to Misfire Count Cylinder #4.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Mode

Data List Display

Coolant Temperature

Injection Mode

Misfire Count Cylinder #1

Misfire Count Cylinder #2

Misfire Count Cylinder #3

Misfire Count Cylinder #4

(g) According to the display on the Techstream, read the Data List with the Active Test "Control the Injection Mode" set to Direct.

HINT:

The A/C switch and all accessory switches should be off, and the shift lever should be in the P position, and the engine should be fully warmed up.

Injection Mode

Misfire Count

Proceed to

Direct

No misfire counts, or misfire counts occur randomly in all cylinders

A

Misfire counts occur in particular cylinder

B

HINT:

Perform "Inspection After Repair" after replacing the direct fuel injector assembly.

Click here

B

REPLACE DIRECT FUEL INJECTOR ASSEMBLY

A

8.

REPLACE FUEL PUMP ASSEMBLY (FOR HIGH PRESSURE SIDE)

(a) Replace the fuel pump assembly (for high pressure side).

Click here

HINT:

Perform "Inspection After Repair" after replacing the fuel pump assembly (for high pressure side).

Click here

NEXT

9.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the power switch off and wait for at least 30 seconds.

NEXT

10.

CONFIRM WHETHER MALFUNCTION HAS BEEN SUCCESSFULLY REPAIRED

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Trouble Codes.

(c) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTCs are not output

A

DTC P017100, P017200, P117000 and/or P117B00 is output

B

A

END

B

REPLACE ECM

11.

INSPECT PORT FUEL INJECTOR ASSEMBLY

(a) Check the injection volume (whether fuel volume is high or low, and whether injection pattern is poor).

Click here

HINT:

Perform "Inspection After Repair" after replacing the port fuel injector assembly.

Click here

OK

REPLACE ECM

NG

REPLACE PORT FUEL INJECTOR ASSEMBLY

12.

CHECK PCV VALVE AND HOSE CONNECTIONS

(a) Check the PCV hose connections.

(b) Check the PCV valve.

Click here

OK:

PCV hose and PCV valve are connected correctly and are not damaged.

NG

REPAIR OR REPLACE PCV VALVE OR HOSE

OK

13.

CHECK INTAKE SYSTEM

(a) Check the intake system for vacuum leaks.

Click here

OK:

No leaks in intake system.

HINT:

Perform "Inspection After Repair" after repairing or replacing the intake system.

Click here

NG

REPAIR OR REPLACE INTAKE SYSTEM

OK

14.

PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE INJECTION VOLUME FOR A/F SENSOR)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

(f) Idle the engine for 5 minutes or more with the shift lever in P.

(g) Enter the following menus: Powertrain / Engine / Active Test / Control the Injection Volume for A/F Sensor / Data List / Coolant Temperature, A/F (O2) Sensor Current B1S1 and A/F (O2) Sensor Current B1S2.

Powertrain > Engine > Active Test

Active Test Display

Control the Injection Volume for A/F Sensor

Data List Display

Coolant Temperature

A/F (O2) Sensor Current B1S1

A/F (O2) Sensor Current B1S2

(h) Perform the Control the Injection Volume for A/F Sensor operation with the engine idling.

(i) Monitor the output values of the air fuel ratio sensor (sensor 1) and air fuel ratio sensor (sensor 2) (A/F (O2) Sensor Current B1S1 and A/F (O2) Sensor Current B1S2) displayed on the Techstream.

HINT:

  • The Control the Injection Volume for A/F Sensor operation lowers the fuel injection volume by 12.5% or increases the injection volume by 12.5%.
  • The air fuel ratio sensor (sensor 1) has an output delay of a few seconds and the air fuel ratio sensor (sensor 2) has a maximum output delay of approximately 20 seconds.
  • If the sensor output value does not change (almost no reaction) while performing the Active Test, the sensor may be malfunctioning.

Standard:

Techstream Display (Sensor)

Injection Volume

Status

Voltage

A/F (O2) Sensor Current B1S1

(Air fuel ratio (sensor 1))

12.5%

Rich

Below -0.075 mA

-12.5%

Lean

More than 0.037 mA

A/F (O2) Sensor Current B1S2

(Air fuel ratio (sensor 2))

12.5%

Rich

Below -0.86 mA

-12.5%

Lean

More than 0.33 mA

Status A/F (O2) Sensor Current B1S1

Status A/F (O2) Sensor Current B1S2

Air Fuel Ratio Condition and Air Fuel Ratio Sensor Condition

Suspected Trouble Area

Proceed to

Lean/Rich

Lean/Rich

Normal

-

A

Lean

Lean

Actual air fuel ratio lean

  • PCV valve and hose
  • PCV hose connections
  • Gas leak from exhaust system
  • Intake system
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • EGR valve assembly

Rich

Rich

Actual air fuel ratio rich

  • Gas leak from exhaust system
  • Ignition system
  • Fuel pressure
  • Mass air flow meter sub-assembly
  • Engine coolant temperature sensor
  • EGR valve assembly

Lean

Lean/Rich

Air fuel ratio sensor (sensor 1) malfunction

  • Air fuel ratio sensor (sensor 1)

B

Rich

Lean/Rich

Air fuel ratio sensor (sensor 1) malfunction

  • Air fuel ratio sensor (sensor 1)
  • Lean: During the Control the Injection Volume for A/F Sensor Active Test, the air fuel ratio sensor (sensor 1) output current (A/F (O2) Sensor Current B1S1) is consistently more than 0.037 mA, and the air fuel ratio sensor (sensor 2) output current (A/F (O2) Sensor Current B1S2) is consistently more than 0.33 mA.
  • Rich: During the Control the Injection Volume for A/F Sensor Active Test, the air fuel ratio sensor (sensor 1) output current (A/F (O2) Sensor Current B1S1) is consistently below -0.075 mA, and the air fuel ratio sensor (sensor 2) output current (A/F (O2) Sensor Current B1S2) is consistently below -0.86 mA.
  • Lean/Rich: During the Control the Injection Volume for A/F Sensor Active Test, the output current of the air fuel ratio sensor (sensor 1) or air fuel ratio sensor (sensor 2) alternate correctly.

HINT:

Refer to "Data List / Active Test" [A/F (O2) Sensor Current B1S1 and A/F (O2) Sensor Current B1S2].

Click here

B

GO TO STEP 24

A

15.

READ VALUE USING TECHSTREAM (COOLANT TEMPERATURE)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Enter the following menus: Powertrain / Engine / Data List / Coolant Temperature.

Powertrain > Engine > Data List

Tester Display

Coolant Temperature

(e) Read the Data List twice, when the engine is both cold and warmed up.

Standard:

Techstream Display

Condition

Specified Condition

Coolant Temperature

Cold engine

Same as ambient air temperature

Warm engine

Between 75 and 100°C (167 and 212°F)

HINT:

Perform "Inspection After Repair" after replacing the engine coolant temperature sensor.

Click here

NG

REPLACE ENGINE COOLANT TEMPERATURE SENSOR

OK

16.

PERFORM ACTIVE TEST USING TECHSTREAM (CONTROL THE EGR STEP POSITION)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature reaches 75°C (167°F) or higher.

HINT:

The A/C switch and all accessories should be off.

(f) Enter the following menus: Powertrain / Engine / Active Test / Control the EGR Step Position / Data List / Intake Manifold Absolute Pressure, Coolant Temperature and Engine Independent.

Powertrain > Engine > Active Test

Active Test Display

Control the EGR Step Position

Data List Display

Intake Manifold Absolute Pressure

Coolant Temperature

Engine Independent

(g) Confirm that the value of Data List item Engine Independent is "Operate" then check the value of Intake Manifold Absolute Pressure while performing the Active Test.

NOTICE:

  • Do not leave the EGR valve open for 10 seconds or more during the Active Test.
  • Be sure to return the EGR valve to step 0 when the Active Test is completed.
  • Do not open the EGR valve 30 steps or more during the Active Test.

OK:

The value of Intake Manifold Absolute Pressure changes in response to the EGR step position when the value of Engine Independent is "Operate".

Standard:

-

Control the EGR Step Position (Active Test)

0 Steps

0 to 30 Steps

Intake Manifold Absolute Pressure

(Data List)

(EGR valve is fully closed)

Intake Manifold Absolute Pressure value is at least +10 kPa (1.45 psi) higher than when EGR valve is fully closed

HINT:

  • If the value of Data List item Engine Independent is "Not Opr" when the engine is idling, charge control is being performed. Perform the Active Test after charge control is complete ("Operate" is displayed).
  • While performing the Active Test, if the increase in the value of Intake Manifold Absolute Pressure is small, the EGR valve assembly may be malfunctioning.
  • Even if the EGR valve assembly is malfunctioning, rough idling or an increase in the value of Intake Manifold Absolute Pressure may occur while performing the Active Test. However, the amount that the value of Intake Manifold Absolute Pressure increases will be smaller than normal.
OK

GO TO STEP 18

NG

17.

INSPECT EGR VALVE ASSEMBLY

(a) Remove the EGR valve assembly.

Click here

(b) Check if the EGR valve is stuck open.

OK:

EGR valve is tightly closed.

HINT:

Perform "Inspection After Repair" after replacing the EGR valve assembly.

Click here

NG

REPLACE EGR VALVE ASSEMBLY

OK

18.

READ VALUE USING TECHSTREAM (MASS AIR FLOW SENSOR)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Data List / Engine Speed, Mass Air Flow Sensor and Coolant Temperature.

Powertrain > Engine > Data List

Tester Display

Engine Speed

Mass Air Flow Sensor

Coolant Temperature

(g) Read Mass Air Flow Sensor while maintaining an engine speed of 2500 rpm.

HINT:

During charge control, the engine speed is set at idle. Therefore, the engine speed will not increase when the accelerator pedal is depressed. In this case, read the Data List after charge control has completed.

Standard:

Techstream Display

Condition

Specified Condition

Mass Air Flow Sensor

  • Engine warmed up
  • Shift position: P
  • A/C: Off
  • Engine Speed: 2500 rpm

Between 6.2 and 18.6 gm/sec

NG

GO TO STEP 31

OK

19.

CHECK FUEL PRESSURE (FOR LOW PRESSURE SIDE)

(a) Check the fuel pressure (for low pressure side).

Click here

NG

GO TO STEP 23

OK

20.

CHECK FOR EXHAUST GAS LEAK

(a) Check for exhaust gas leaks.

OK:

No gas leaks.

HINT:

Perform "Inspection After Repair" after repairing or replacing the exhaust system.

Click here

NG

REPAIR OR REPLACE EXHAUST SYSTEM

OK

21.

INSPECT SPARK PLUG

(a) Inspect the spark plug.

Click here

HINT:

Perform "Inspection After Repair" after replacing the spark plug.

Click here

NG

REPLACE SPARK PLUG

OK

22.

CHECK FOR SPARK (SPARK TEST)

(a) Perform a spark test.

Click here

HINT:

  • If the result of the spark test is normal, proceed to the next step.
  • Perform "Inspection After Repair" after replacing the spark plug or ignition coil assembly.

    Click here

NEXT

GO TO STEP 31

23.

CHECK FUEL LINE

(a) Check the fuel lines for leaks or blockage.

HINT:

Perform "Inspection After Repair" after replacing the fuel pump (for low pressure side).

Click here

OK

REPLACE FUEL PUMP (FOR LOW PRESSURE SIDE)

NG

REPAIR OR REPLACE FUEL SYSTEM

24.

INSPECT AIR FUEL RATIO SENSOR (SENSOR 1) (HEATER RESISTANCE)

(a) Inspect the air fuel ratio sensor (sensor 1).

Click here

HINT:

Perform "Inspection After Repair" after replacing the air fuel ratio sensor (sensor 1).

Click here

NG

REPLACE AIR FUEL RATIO SENSOR (SENSOR 1)

OK

25.

CHECK TERMINAL VOLTAGE (POWER SOURCE OF AIR FUEL RATIO SENSOR (SENSOR 1))

*a

Front view of wire harness connector

(to Air Fuel Ratio Sensor (Sensor 1))

(a) Disconnect the air fuel ratio sensor (sensor 1) connector.

(b) Turn the power switch on (IG).

(c) Measure the voltage according to the value(s) in the table below.

Standard Voltage:

Tester Connection

Condition

Specified Condition

C46-2 (+B) - Body ground

Power switch on (IG)

11 to 14 V

NG

GO TO STEP 34

OK

26.

CHECK HARNESS AND CONNECTOR (AIR FUEL RATIO SENSOR (SENSOR 1) - ECM)

(a) Disconnect the air fuel ratio sensor (sensor 1) connector.

(b) Disconnect the ECM connector.

(c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

C46-1 (HA1A) - C55-9 (HA1A)

Always

Below 1 Ω

C46-3 (A1A+) - C55-95 (A1A+)

Always

Below 1 Ω

C46-4 (A1A-) - C55-94 (A1A-)

Always

Below 1 Ω

C46-1 (HA1A) or C55-9 (HA1A) - Body ground and other terminals

Always

10 kΩ or higher

C46-3 (A1A+) or C55-95 (A1A+) - Body ground and other terminals

Always

10 kΩ or higher

C46-4 (A1A-) or C55-94 (A1A-) - Body ground and other terminals

Always

10 kΩ or higher

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

27.

REPLACE AIR FUEL RATIO SENSOR (SENSOR 1)

(a) Replace the air fuel ratio sensor (sensor 1).

Click here

HINT:

Perform "Inspection After Repair" after replacing the air fuel ratio sensor (sensor 1).

Click here

NEXT

28.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the power switch off and wait for at least 30 seconds.

NEXT

29.

CONFIRM WHETHER MALFUNCTION HAS BEEN SUCCESSFULLY REPAIRED

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Trouble Codes.

(c) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTCs are not output

A

DTC P017100, P017200, P117000 and/or P117B00 is output

B

A

END

B

30.

READ VALUE USING TECHSTREAM (MASS AIR FLOW SENSOR)

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Put the engine in Inspection Mode (Maintenance Mode).

Powertrain > Hybrid Control > Utility

Tester Display

Inspection Mode

(e) Start the engine and warm it up until the engine coolant temperature is 75°C (167°F) or higher with all the accessories switched off.

(f) Enter the following menus: Powertrain / Engine / Data List / Engine Speed, Mass Air Flow Sensor and Coolant Temperature.

Powertrain > Engine > Data List

Tester Display

Engine Speed

Mass Air Flow Sensor

Coolant Temperature

(g) Read Mass Air Flow Sensor while maintaining an engine speed of 2500 rpm.

HINT:

During charge control, the engine speed is set at idle. Therefore, the engine speed will not increase when the accelerator pedal is depressed. In this case, read the Data List after charge control has completed.

Standard:

Techstream Display

Condition

Specified Condition

Mass Air Flow Sensor

  • Engine warmed up
  • Shift position: P
  • A/C: Off
  • Engine Speed: 2500 rpm

Between 6.2 and 18.6 gm/sec

NEXT

31.

CHECK HARNESS AND CONNECTOR (MASS AIR FLOW METER SUB-ASSEMBLY CONNECTOR CONNECTION)

(a) Check the connection and terminal contact pressure of connectors and wire harnesses between the mass air flow meter sub-assembly and ECM.

Click here

HINT:

Repair any problems.

NEXT

32.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the power switch off and wait for at least 30 seconds.

NEXT

33.

CHECK WHETHER DTC OUTPUT RECURS (DTC P017100, P017200, P117000 OR P117B00)

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Trouble Codes.

(c) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTCs are not output

A

DTC P017100, P017200, P117000 and/or P117B00 is output

B

A

END

B

GO TO STEP 38

34.

INSPECT EFI-MAIN NO. 2 RELAY

(a) Inspect the EFI-MAIN NO. 2 relay.

Click here

NG

REPLACE EFI-MAIN NO. 2 RELAY

OK

35.

CHECK TERMINAL VOLTAGE (POWER SOURCE OF EFI-MAIN NO. 2 RELAY)

*1

No. 1 Engine Room Relay Block and No. 1 Junction Block Assembly

*2

EFI-MAIN NO. 2 Relay

(a) Remove the EFI-MAIN NO. 2 relay from the No. 1 engine room relay block and No. 1 junction block assembly.

(b) Measure the voltage according to the value(s) in the table below.

Standard Voltage:

Tester Connection

Condition

Specified Condition

3 (EFI-MAIN NO. 2 relay) - Body ground

Always

11 to 14 V

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR (AUXILIARY BATTERY - EFI-MAIN NO. 2 RELAY)

OK

36.

CHECK HARNESS AND CONNECTOR (EFI-MAIN NO. 2 RELAY - BODY GROUND)

(a) Remove the EFI-MAIN NO. 2 relay from the No. 1 engine room relay block and No. 1 junction block assembly.

(b) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

1 (EFI-MAIN NO. 2 relay) - Body ground

Always

Below 1 Ω

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

37.

CHECK HARNESS AND CONNECTOR (EFI-MAIN NO. 2 RELAY - AIR FUEL RATIO SENSOR (SENSOR 1))

(a) Remove the EFI-MAIN NO. 2 relay from the No. 1 engine room relay block and No. 1 junction block assembly.

(b) Disconnect the air fuel ratio sensor (sensor 1) connector.

(c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

5 (EFI-MAIN NO. 2 relay) - C46-2 (+B)

Always

Below 1 Ω

5 (EFI-MAIN NO. 2 relay) or C46-2 (+B) - Body ground and other terminals

Always

10 kΩ or higher

OK

REPAIR OR REPLACE HARNESS OR CONNECTOR (EFI-MAIN NO. 1 RELAY - EFI-MAIN NO. 2 RELAY)

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

38.

CHECK HARNESS AND CONNECTOR (MASS AIR FLOW METER SUB-ASSEMBLY - ECM)

(a) Disconnect the mass air flow meter sub-assembly connector.

(b) Disconnect the ECM connector.

(c) Measure the resistance according to the value(s) in the table below.

Standard Resistance:

Tester Connection

Condition

Specified Condition

C28-3 (5V) - C55-78 (VCVG)

Always

Below 1 Ω

C28-1 (FG) - C55-101 (VG)

Always

Below 1 Ω

C28-2 (E2G) - C55-79 (E2G)

Always

Below 1 Ω

C28-3 (5V) or C55-78 (VCVG) - Body ground and other terminals

Always

10 kΩ or higher

C28-1 (FG) or C55-101 (VG) - Body ground and other terminals

Always

10 kΩ or higher

C28-2 (E2G) or C55-79 (E2G) - Body ground and other terminals

Always

10 kΩ or higher

NG

REPAIR OR REPLACE HARNESS OR CONNECTOR

OK

39.

REPLACE MASS AIR FLOW METER SUB-ASSEMBLY

(a) Replace the mass air flow meter sub-assembly.

Click here

HINT:

  • If the result of the inspection performed in steps 18 and 30 (READ VALUE USING TECHSTREAM (MASS AIR FLOW SENSOR)) indicated no problem, proceed to the next step without replacing the mass air flow meter sub-assembly.
  • Perform "Inspection After Repair" after replacing the mass air flow meter sub-assembly.

    Click here

NEXT

40.

CLEAR DTC

(a) Connect the Techstream to the DLC3.

(b) Turn the power switch on (IG).

(c) Turn the Techstream on.

(d) Clear the DTCs.

Powertrain > Engine > Clear DTCs

(e) Turn the power switch off and wait for at least 30 seconds.

NEXT

41.

CONFIRM WHETHER MALFUNCTION HAS BEEN SUCCESSFULLY REPAIRED

(a) Drive the vehicle in accordance with the driving pattern described in Confirmation Driving Pattern.

(b) Enter the following menus: Powertrain / Engine / Trouble Codes.

(c) Read the DTCs.

Powertrain > Engine > Trouble Codes

Result

Proceed to

DTCs are not output

A

DTC P017100, P017200, P117000 and/or P117B00 is output

B

A

END

B

REPLACE ECM

    A/F (O2) Sensor Circuit Bank 1 Sensor 2 Circuit Current (Voltage) Below Threshold (P013616,P013A7C)

    Fuel Rail Pressure Sensor "A" Circuit Short to Ground (P019011)

    See More:

    Toyota Avalon (XX50) 2019-2022 Service & Repair Manual > Can Communication System(for Hv Model): Open in Bus 4 Main Bus Line
    DESCRIPTION There may be an open circuit in one of the CAN main bus lines when the resistance between terminals 22 (CA2H) and 7 (CA2L) of the central gateway ECU (network gateway ECU) is 70 Ω or higher. Symptom Trouble Area Resistance between terminals 22 (CA2H) and 7 (CA2L) of the central gateway ...

    Toyota Avalon (XX50) 2019-2022 Owners Manual

    Toyota Avalon (XX50) 2019-2022 Service & Repair Manual

    © 2025 Copyright www.tavalon.net
    0.0305